1 ГЕНЕТИКА БАКТЕРИЙ Цель лекции: ознакомить студентов с основами генетики бактерий, с основными методами генодиагностики. План лекции 1. Особенности организации ядерного аппарата бактерий. 2. Состав бактериального генома. 3. Изменчивость бактерий. 4. Рекомбинации у бактерий и их особенности. 5. Генодиагностика. 6. Классификация бактерий. 1.Особенности морфологической организации ядерного аппарата бактерий: - не имеет ядерной мембраны, ядрышка; носит название нуклеоид; - носителем генетической информации является ДНК. Если у эукариот ДНКлинейная, то у большинства бактерий - кольцевая, и одна нить фиксирована на цитоплазматической мембране. Если раскрутить ДНК, то длина её будет в сотни раз превышать длину клетки. ДНК бактерий суперспирализована. - бактериальная клетка содержит одну хромосому, т.е. бактерии являются гаплоидными организмами. 2. Биохимические особенности. - ДНК бактерий имеет тот же состав, что и ДНК эукариот. - у бактерий в составе ДНК могут находиться минорные основания, наличие которых защищает ДНК от действия собственных эндонуклеаз. - в геноме патогенных бактерий имеются участки ДНК, которые отличаются от основного генома составом Г-Ц пар нуклеотидных оснований. Эти участки ответственны за синтез факторов патогенности-острова патогенности. - ДНК бактерий не содержит гистонов, а их роль выполняют полиамины. Бактериальный геном представлен структурами, которые способны к автономной репликации. Таких структур две: хромосомы, в которых закодирована вся жизненно необходимая информация (в хромосоме бактерий содержится до 3 тыс. различных генов), и плазмиды. Плазмиды - это ДНК, которые имеют кольцевую природу. Плазмиды в клетке могут находиться в одном из двух альтернативных состояний: в свободном или интегрированном с хромосомой. В плазмидах закодирована дополнительная генетическая информация, которая не является жизненно необходимой для клетки, но наличие этой информации сообщает ей определенные селективные преимущества. В состав плазмид входят: -структурные гены; -гены, отвечающие за собственную репликацию плазмиды. Некоторые плазмиды имеют гены, обеспечивающие трансмиссивность плазмиды - tra-гены. 2 По кодируемому признаку различают: - R плазмиды- кодируют лекарственную устойчивость бактерий; - F (sex) плазмиды - определяют способность клетки быть донором генетической информации; - Col плазмида - кодирует синтез бактериоцинов; - плазмиды, отвечающие за синтез факторов вирулентности (Ent-, Hly-) и другие плазмиды. В состав бактериального генома входят подвижные генетические элементы: IS-элементы (insertion sequences), транспозоны и интегроны. Они обнаружены как в составе бактериальной хромосомы, так и в составе плазмид. Их репликация – составная часть репликации хромосомы и плазмиды. IS-элементы - короткие (2000) нуклеотидные последовательности. Отличительной особенностью IS-элементов является наличие на концах инвертированных повторов, которые узнает транспозаза. Они не несут структурных генов; одинаковы у бактерий разных видов, родов, и даже считается, что они одинаковы у прокариот и у эукариот. IS-элементы могут перемещаться как по хромосоме, так и между хромосомами. Они содержат 2 гена:1-й кодирует синтез транспозазы; этот фермент обеспечивает процесс исключения IS элемента из хромосомы и его интеграцию в новой локус хромосомы . 2-й ген кодирует синтез репрессора, который регулирует весь процесс перемещения. Транспозоны – это сегменты ДНК, обладающие теми же свойствами, что и ISэлемент, но имеющие структурные гены. Интегроны – подвижные генетические элементы; они содержат ген, кодирующий устойчивость к антибиотикам. Интегроны являются системой захвата малых элементов ДНК, называемых генными кассетами посредством сайтспецифической рекомбинации и их экспрессии. Значение мобильных элементов. Перемещаясь по ДНК клетки или между ДНК разных клеток, они вызывают: - инактивацию генов тех участков ДНК, куда они, переместившись, встраиваются; - повреждения генетического материала; - встраивание плазмиды в хромосому; - распространение гена в популяции бактерий. Бактериям, как и всем живым существам, свойственна изменчивость. Изменчивость у эукариот происходит по вертикали, у бактерий – и по вертикали, и по горизонтали. Различают два вида изменчивости: - фенотипическая -генотипическая. Фенотипическая изменчивость проявляется в виде модификаций - это изменение свойств клетки под влиянием внешних воздействий. 3 Модификации могут быть длительными и кратковременными. Модификационные изменения касаются подавляющего большинства клеток популяции. Генотипическая - это мутации или рекомбинации. Мутации могут быть спонтанными и индуцированными. Рекомбинации - это взаимодействие между двумя геномами, обладающими различными генотипами, которое приводит к образованию генома, сочетающего гены донора и реципиента. В процессе рекомбинации бактерий условно делят на клетки-доноры, которые передают генетический материал, и клетки-реципиенты, которые его принимают. Рекомбинация у бактерий рассматриваются как аналоги полового размножения. Особенности рекомбинаций у бактерий: - отсутствует мейоз. Образуется не зигота, а меразигота. - всегда направлена от донора к реципиенту. - количество генетического материала у рекомбинанта всегда больше одного. Рекомбинант содержит всю генетическую информацию реципиента и часть генетической информации донора. У эукариот механизм рекомбинации один – мейоз; у бактерий различают три вида рекомбинаций: 1) трансформация- это обмен генетической информации с помощью чистой ДНК. 2) трансдукция – этот способ переноса генетической информации с помощью фагов. 3) конъюгация – это способ передачи генетической информации, когда между двумя бактериями образуются цитоплазмические мостики. При конъюгации в клетку-реципиент может перейти почти весь геном. Генетические методы применяются в практических целях как для обнаружения микроба в исследуемом материале без выделения чистой культуры, так и для определения таксономического положения микроба и проведения внутривидовой идентификации. Секвенирование генома – определение последовательности пар нуклеотидов ДНК. Рестрикционный анализ – этот метод основан на применении ферментов рестриктаз – это эндонуклеазы, которые расщепляют молекулу ДНК только в определённых местах. Если выделенную из конкретного материала ДНК обработать определенной рестриктазой, то это приведет к образованию строго определенного количества фрагментов ДНК фиксированных размеров. Риботипирование – позволяет определить вид бактерий. Последовательность нуклеотидных оснований в оперонах, кодирующих рРНК, характеризуется наличием как консервативных участков, которые имеют сходное строение у различных бактерий, так и вариабельных последовательностей, которые родо- и видоспецифичны и являются маркерами при генетической идентификации. 4 Молекулярная гибридизация – применяется в геносистематике. Этот метод позволяет выявить степень сходства различных ДНК. ПЦР используется для обнаружения генов или соответствующих нуклеотидных последовательностей, кодирующих либо видовую принадлежность, либо иной признак. Метод ПЦР основан на принципе комплементарности и позволяет увеличивать (амплифицировать) количество исследуемого образца ДНК. Этот метод обладает чрезвычайно высокой чувствительностью и теоретически позволяет обнаружить в исследуемом материале даже единичные молекулы ДНК. Разновидности ПЦР: - ПЦР в режиме реального времени; даёт возможность определить количество фрагментов ДНК находящегося в материале, т.е. проводить количественный анализ; - мультиплексная ПЦР – преимущество заключается в том, что в реакционную смесь можно вводить 2 – 4 и более пары праймеров. Они характерны для различных возбудителей. - обратнотранскрипционная ПЦР – позволяет осуществить копирование РНК возбудителей. ДНК – чипы являются новейшими технологиями гибридизационных методов молекулярно-генетического анализа. Они представляют собой носители известных олигонуклеотидов (менее 20 оснований каждый), комлементарных участкам исследуемого генома (или геномов) и занимающих определенный сайт (ячейку). При наличии в исследуемой пробе фрагментов искомой ДНК они гибридизуются (соединяются по принципу комплементарности) с нуклеотидными последовательностями, сидящими на чипе. Классификация бактерий. Основной таксономической единицей у бактерий является вид. Для обозначения вида у бактерий используется двойная (бинарная) номенклатура Вид у бактерий- это совокупность родственных бактерий, которые обладают сходными биологическими свойствами и имеют общее происхождение. В настоящее время существует 3 подхода к классификации бактерий: 1. Рутинная классификация. Она лежит в основе определителя бактерий под редакцией Берджи. 2. Нумерическая таксономия. 3. Геносистематика. Заключение: студенты ознакомлены с основами генетики бактерий, с основными методами генодиагностики. перейти в каталог файлов
|